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How does global change atfect
food webs?
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Global change and food webs

Landscape homogenization and synchrony




Aphid numbers
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What is the effect of synchronous vs.
asynchronous harvesting?

Simulated experiment for susceptible aphids
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Experiment

Contrast synchronous vs.

l ll asynchronous harvesting

I |
I



Augment natural populations with
50% resistant (H. defensa) and
50% susceptible clones




Augment natural populations
of parasitoids to ensure at
least moderate parasitism




Results: ecological dynamics
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Results: evolutionary
dynamics

Treatment Assayed Resistant

async 100 50
async 101 63

)
sync 101 6

sync 100 7




spatio-temporal variability
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Ecological-evolutionary dynamics
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Spatially diverse agricultural landscape
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Arlington Research Station STARFM: Landsat + MODIS



Spatially diverse agricultural landscape

) ll':..:_r ; J'I .

Likai Zhu STARFM: Landsat + MODIS






Broad-scale view of disturbances
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Nighttime lights and warming
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Nighttime lights and warming
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Visual predator
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Visual predator
Light
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Visual predator

Light
pollution
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Visual predator

Light
pollution
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Number of aphids
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Nighttime lights vs. nighttime warming
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Temperature Anomaly (°C)
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Wisconsin is

getting less
snow cover
.
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Average snow depth (cm)
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Less snow reduces parasitism and
increases aphid density

Proportion of parasitoids

surviving winter
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Snow cover (MODIS)
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Frozen ground (AMSR-E)
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Frozen ground with no snow
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Introduction

* Whether frozen ground is covered by snow greatly affects biotic
responses to climate change because the s 1 can provide an
insulated and thermally stable refugium ’

* Satellite data characterizing of freeze/thaw cycles and snow cover
are available, but have not been combined to map the subnivium

Goal

To characterize globzl patterns of frozen ground with or without snow
in order to provide a baseline to assess the effects of future winter
climate change on organisms that overwinter

Data and methods

Data

* NASA ME=SUREs Global Record of Daily Landscape Freeze/Thaw
Status data from AMSR-E: 2000-'12

*  8-day MODIS Snow Cover product (MOD10A2) from 2000-"12
Methods

[ Daily AMSR-E freeze/thaw data I [ 8-day MODIS snow cover data

—_Filtering outliers —[

Defining the timing and
duration of frozen season

l
) I ) ]
['me start of the frozen season ’ t The end of the frozen season
I ' ] ;
i L ]
[The length of the frozen season 1

[

!
Duration of snow-cover frozen ground(o..,)/
l Duration of uncovered frozen ground (D..a)

Interpolating
cloud pixels

The start of the frozen season: the middle day of the first 15
consecutive days for which at least 8 days were frozen

The end of the frozen season: the middle day the last 15
consecutive days for which at least 8 days were thawed

The length of the frozen season: the period between the start and
end of the frozen season
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Likai Zhu

Department of Forest and Wildlife Ecology
University of Wisconsin-Madison
Madison, W1 53706
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Global patterns of Dws and Dwos

Fig. 1 Global pattern of the
mean length of the snow

e w P~ ey~ season (Dws. 2000-'12). The
o’ TSR A e IV Northern Hemisphere
3 T accounted for about 97%
of all snow covered ground.
i “ % 2 Thelongest Dus occurred in
s mountainous regions and

high Iatitudes.

Fig. 2 Global pattern of the

e RN L Ty Catied
o S A ’f{*r <+~ - " mean length of the frozen
o et TS ™ season (2000-12). The
< X -] pattern was similar to that
\’ v '_" 1 of the Dus, which indicated
¢ that the D.\ became longer
— with an increase in the
— frozen season duration.

(Fig. 3 Global pattern of the
mean length of uncovered
|frozen ground (Dwss, 2000-
“12). Cold constrained
_areas were at middle

=~J |1atitudes even though the
- frozen season was shorter
there than that at high
!atitudes.
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We calculated the mean Dws and Dacs in one-degree bins of latitude.
Dus increased with Iatitudes (Fig. 4a). Dw: was shorter in Europe than
that in Northern America and Asia. In the Northern Hemisphere, the
Diwes peaked at about 35 °N (Fig. 4b)
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Fig. 4 Variations of (a) Dws and (b) Dws: by latitude. We smoothed the
data with a local polynomial regression fit.
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Global pattern of Dys percentage

Fig. 5 Global pattern of

. the percentage of Dws (Duws
divided by the sum of Dws
and Dwes). The longest Dus
mainly occurred at the

, mountainous regions and

- high Iatitudes.
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Temporal variability of Dws and Dwos

Fig. 6 Global pattern of
« the coefficient of variation

variability of Dus was lower
at higher latitudes.
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| Fig. 7 Global pattern of
the CV of Duos. The
temporal vanablhty of Duus

| was greater at higher

> , Iatitudes.

Discussion and conclusions

We developed a 500-m resolution dataset for 2000-'12 that captured
global patterns of snow-covered and uncovered frozen ground

The mid-latitude areas were functionally colder than either northern
or southern latitudes due to more days of uncovered frozen ground
The Duus at high latitudes may be more sensitive to climate change
because of its shorter duration and greater temporal variability
Climate warming may result in 3 counterintuitive trend of large areas
in the north becoming functionally colder as snow cover diminishes

NASA’s Biodiversity and Ecological Forecasting program

http://silvis forest wisc.edu

NSF’s Dimensions of Biodiversity program.
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Global change and food webs

I. Homogenization and synchronous mowing
disrupts predator-prey cycles, and
evolutionary dynamics

II. Interaction of nighttime lights and warming
gives visual predators an unpredicted edge

III. Winter warming makes mid-latitudes
functionally colder, preventing the
overwintering of parasitoids wasps
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Loose scaling between experiments and
satellite data can be both fruitful and fun!






